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The Federal Aviation Administration (FAA) in the United States is responsible for regulating aircraft traf� c
and safety. A signi� cant increase in domestic air traf� c coupled with an aging population of aircraft has led the
FAA to initiate new aircraft safety research efforts. These efforts are intended to provide the FAA’s aviation safety
inspectors (ASIs) with the means to evaluate and to control appropriate surveillance levels for aircraft operators.
One of the FAA’s databases is the service dif� culty report (SDR) system. It provides FAA inspectors with reliability
and airworthiness statistical data necessary for planning, directing, controlling, and evaluating certain assigned
safety and maintenance programs. Neural network forecasting models are developed that predict the number of
SDRs for aircraft structural component groupings, referred to as Air Transportation Association chapters. Data
are used from two speci� c operators with homogeneous � eets, that is, same aircraft make. It is an extension of
previous SDR forecasting research in that it strati� es forecasts by structural component groupings.

I. Introduction

T HE FederalAviationAdministration(FAA) in theUnitedStates
is responsible for regulating aircraft traf� c and safety. An ex-

pected increase in usage of domestic � ights in the next few years
coupled with an aging population of aircraft has led the FAA to
initiate new aircraft safety research efforts.1 An important avia-
tion safety performancemeasure is the number of service dif� culty
reports (SDRs), which is an airworthiness or maintenance-related
performance measure.

The servicedif� culty informationprovidesFAA safety inspectors
with aircraft component reliabilityand airworthinessstatisticaldata
necessary for planning, directing, controlling, and evaluating cer-
tain assigned safety and maintenance programs.2 This system also
providesFAA managers and inspectorswith a means for measuring
the effectiveness of the self-evaluation techniques being employed
by certain segments of the civil aviation industry. The completion
of an SDR requires careful review of the reported discrepancy and
supporting data. An effective evaluation of the extent of the prob-
lem and its causes is essential for determining corrective action. If
the opportunity exists, the inspector usually reviews prior reports
for possible trends, for example, vendor problems, manufacturer
equipment problems, training, and/or procedural problems. How-
ever, there are currently no systematic or quantitative techniques
used for identifying possible trends. Trending analysis is based on
visual inspection of graphical data plots. Thus, aviation safety in-
spectors (ASIs) in the � eld repeatedly expressed strong interest in
reliable forecast techniquesfor the number of SDRs. Such forecasts
would be a helpful tool for the management of human resources,
their effective placement, and scheduling.

Estimation of the total number of SDRs in a given time inter-
val that a particular airline would be expected to have, strati� ed
by structural aircraft component groupings, could help to identify
situations in need of heightened level of surveillance by the FAA’s
safety inspectors, for example, if the airline’s numberof SDRs is far
above or below what should be expected. An excessive number of
SDRs in a given time period could suggest mechanical, operating,
or design problems with certain aircraft. Whereas too few SDRs re-
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ported in a given time may not necessarilybe problematic,an expert
panel of safety inspectors noted that a very low number of SDRs
for an airline in a given time period could possibly suggest organi-
zational or management problems, lack of regulatory compliance,
airline maintenance cutbacks, or � nancial or labor problems. Both
high and low numbers of SDRs would merit closer scrutiny by FAA
safety inspectors.

Transport Canada, the Canadian counterpart of the FAA, has re-
centlydevelopedand is currentlyimplementingan automatedtrend-
ing and monitoring system (ATMS). This system was developed
to identify changes to normal levels in the number of SDRs. The
paradigm of the ATMS was borrowed from the quality control dis-
cipline. In the � rst phase, the ATMS utilizes a control charting tech-
nique, comparing the number of SDRs for a given month against
an upper control limit established from previous data. In a second
phase, the ATMS analyzes the aggregate number of SDRs over the
last series of months to detect an aggregate trend in the number of
SDRs. The upper control limit used in the � rst step is calculated
based on the Chebyshev inequality. The Chebyshev inequality pro-
videsdistribution-independentboundsfor the marginalprobabilities
of a stochasticprocess.As such, it is a powerful inequality that does
not require any knowledge about the distribution of the underlying
process. Unfortunately, estimates obtained from the Chebyshev in-
equality are relatively weak estimates. Nonetheless, applying the
ATMS to historical data has shown that ATMS is capable of identi-
fying potential problems. Currently, the FAA is collaborating with
Transport Canada to re� ne the ATMS and to test and eventually to
implement it in the United States. Nonetheless, the ATMS, based
on quality control principles, is a reactive tool, not a proactive tool.

Neuralnetworksnaturallylend themselvesto time seriesand fore-
cast analysis of complex processes. They, too, do not require any
knowledge of an underlying distribution, nor do neural networks
require exact mathematical models. Rather they attempt to recog-
nize relationshipsbased on trainingpatterns.They can be trained to
recognize relationships in the time domain as well as correlations
among a host of other variables. Even though neural network tech-
nology is becoming a mature technology, its application to the avi-
ation industry in general and SDR forecasting in particular has not
yet been thoroughly investigated.Some earlier research results are
discussednext.This paper is aimedat extendingtheseresultsand the
applicationof neural networks to the forecasting of SDRs strati� ed
by Air TransportationAssociation (ATA) chapter codes.

Luxhoj et al.3 and Shyur et al.4 report on SDR forecastingmodels
for aircraft. The data used in their research investigationincluded a
subset of the SDR database that had been merged with the aircraft
utilizationaviation researchand support database for the same � eet.
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A data grouping method is used to obtain a populationmodel. Mul-
tiple regression and neural network models were studied, and the
forecastingaccuracy for each method was reported. In their studies,
the original ungrouped data set appeared to be noisy. A population
concept proved to be a very effective modeling technique for both
the regression analysis and in the construction of neural networks
for determining strategic safety inspection indicators. Whereas the
populationconcept is constructivefor developingmodels to predict
national norms for SDR reporting, there is a loss of information in
grouping the data.

In another research effort, Luxhoj5 re� ned the population model
analysisby focusingon speci� c operatorswith homogeneous� eets,
that is, same aircraft make. It is an extension to the previous
research,2 but now provides more meaningful information because
the aircraft data in the earlier study were composedof numerousop-
erators with mixed � eets and differing operating and maintenance
policies.Again,multipleregressionandneuralnetworkmodelswere
the principal two forecasting methods examined. Autoregression,
exponentialsmoothing, and moving average forecasting techniques
were also evaluated.

II. Problem Domain: Motivation and Goal
The current research effort was sparked by interest of ASIs who

expressed that a further speci� cation in the SDR forecast would
be extremely useful for direct � eld application. In this sense, the
current research is a further extension to studies by Luxhoj et al.,3

Shyur et al.,4 and Luxhoj.5 It builds on the experience and results
from these studies, but introduces yet another data strati� cation.
The current research, again, used data from speci� c operators with
homogeneous � eets, that is, same aircraft make. However, instead
of forecasting the overall number of SDRs, the current research
focuseson the number of SDRs by structuraland functionalaircraft
component groupings (as grouped by ATA chapters and described
subsequently).

Structural and functional components common to most aircraft
are coded in the ATA speci� cation 100 code or the Joint Aircraft
System Component (JASC) code. Further logical, syntactical, and
historical clari� cation on these coding systems is given next.

The � rst aircraft structural/functional component coding system
was developed by the FAA in the mid-1960s and became known
as the FAA Aircraft System/Component Code. It was an eight-digit
alpha–numeric code developedaround the computer technologyof
that period. It consisted of a four-digit numerical code plus four
alpha characters.

Later the ATA speci� cation 100 code (ATA code) was devel-
oped and maintained by an FAA contractor.Advances in computer
technology made a reduction from an eight- to a four-digit code
possible. The ATA code is a four-digit code, of which the � rst two
digits reference a major structural/functional system or component
groupingon an aircraft, whereas the third digit references a subsys-
tem/subcomponent.The fourth digit is not referenced.

During the late 1980s, the FAA initiated research efforts to de-
velop their own coding system. The resulting product is the JASC
code. It was introduced in May 1991 and is now suggested for use.
Once implemented, it will be mandatory for reporting in all major
FAA databases, such as the SDR or accident/incident data system.
Coding of historic records in those databases will be updated to re-
� ect the new codingsystem.Inmost cases, the � rst threedigits of the
JASC code match the � rst three digits of the ATA code. The JASC,
however, because of later development does divert in some areas
from the ATA code to re� ect technological advances that led to a
signi� cant increase in some structuralareas and made a subdivision
of others more meaningful.For example, the FAA code 5301SXBD
(body, section structure) has been expanded to 20 items due to the
high rate of reporting in this area for the year 1989 (8021 reports
were received). Also, the JASC code divides the engine section into
two code groups to separate turbine and reciprocating engines. As
with the ATA code, the JASC code is a hierarchical code. Its � rst
two digits specify the major structural/functional aircraft compo-
nent groupingsand are referred to as the JASC chapter,whereas the
last two digits specify the subsystem/subcomponent.

Table 1 ATA chapters and codes

ATA chapter
code Category

Aircraft
11 Placards and markings
12 Servicing
18 Helicopter vibration

Airframe systems
21 Air conditioning
22 Auto� ight
23 Communication
24 Electric power
25 Equipment/furnishing
26 Fire protection
27 Flight controls
28 Fuel
29 Hydraulic power
30 Ice and rain protection
31 Instruments
32 Landing gear
33 Lights
34 Navigation
35 Oxygen
36 Pneumatic
37 Vacuum
38 Water/waste
45 Central maintenance system
46 Airborne auxiliary power
51 Standard practices/structures
52 Doors
53 Fuselage
54 Nacelles/pylons
55 Stabilizers
56 Windows
57 Wings

Propeller/rotor systems
61 Propellers/propulsors
62 Main rotor
63 Main rotor drive
64 Tail rotor
65 Tail rotor drive
67 Rotor � ight control

Powerplant system
71 Powerplant
72 Turbine/turboprop engine
73 Engine fuel and control
74 Ignition
75 Air
76 Engine controls
77 Engine indicating
78 Engine exhaust
79 Engine oil
80 Starting
81 Turbocharging
82 Water injection
83 Accessory gearboxes
85 Reciprocating engine

As of today, the ATA code is still in place, and thus the anal-
ysis was based on that ATA code. A list of chapter codes is pro-
vided in Table 1. ATA chapter codes are generally divided into four
categories, aircraft, airframe systems, propeller/rotor systems, and
powerplant systems.

III. Neural Networks
Neuralnetwork technologymimics the brain’s own problemsolv-

ing process. Just as humans apply knowledge gained from past ex-
perience to new problems or situations, a neural network takes pre-
viouslysolved examples to build a system of neurons that make new
decisions, classi� cations, and forecasts.

Neural networks look for patterns in training sets of data, learn
these patterns, and develop the ability to correctly classify a new
pattern or to make forecasts and predictions. Neural networks ex-
cel at problem diagnosis, decision making, prediction, and other



334 NORDMANN AND LUXHOJ

classifying problems where pattern recognition is important and
precise computational answers are not required.

McCulloch and Pitts6 introduced the fundamental idea of neural
networks. Neural networks gained in popularity at the beginning
of the 1980s.7,8 Neural networks (NNs) consist of relatively sim-
ple processingelements (nodes or units) connectedby links. A unit
receives the signal from the input links and computes an activa-
tion level that it sends to the next layer along the output links. The
computation can be divided into two parts. The � rst part is a linear
function that computes the weighted sum of all of the input vari-
ables. The second part is a nonlinear function (activation function)
that decideswhether the output is be greater than a thresholdor not.9

The NN structure, in which a particular NN connects its percep-
trons and generates outputs, is also referred to as its architecture.
There are many distinguishingaspects of NN architectures,such as
the numberof hiddenlayers,recurrentvs feedforwardnetworks,dis-
crete vs continuousoutput networks, jump vs nonjump connection,
etc. However, a general aspect of NNs is that of the neural connec-
tions that mimic the brain’s dendrites.A connectionis characterized
by its starting and ending neuron and a particular weight that deter-
mines how much activation is passed through that connection.

Training an NN, or learning, is the process of adjusting neuron
connections such that the prediction error is minimized. Whereas
human brains can also build new and break old dendrites, arti� cial
NNs can only adjust the weights of the connection.

In NN terminology, the set of all variables is divided into inputs
and outputs. Inputs (or independent variables) are those variables
whose values are commonly available. Outputs (or dependent vari-
ables) are those that, eventually, one wishes to classify or predict
based on known input values.

A set of associatedvariable values is referred to as a pattern.The
set of all availablepatternsde� nes the pattern set. This pattern set is
divided into three distinct subsets, the training set, the test set, and
the production set.

In training an NN, it will repeatedly look at the patterns in the
training set. Starting with some initial settings for all of the connec-
tion weights, the NN predicts values of the output variables based
on the values of the input variables only. An internal algorithm,
also referred to as the learning algorithm, will then compare the
predicted output values to the actual output values and attempts to
adjust the connectionweights of the NN such that predictionerrors
are minimized. Eventually, if the problem can be learned, a sta-
ble set of weights adaptively evolves. However, if the arti� cial NN
were only shown the same training set often enough, like a human
brain, it would � nally lose its capability to reason and instead start
to memorize. Such a network would then yield excellent prediction
results on the memorized patterns, but would fail on new, unseen
patterns. To avoid memorization, or over� tting, in training the NN,
from time to time it will be evaluated on the test set. This process is
referred to as calibration. Finally, to evaluate the trained network’s
power, it can be tested on the productionset. This is a reservedset of
patterns that the NN has never seen before. If the underlying prob-
lem can be learned and the NN was able to learn primary variable
associations, then it should also yield good results on this produc-
tion set.

As already indicated, NNs can be distinguished between
continuous-output and classi� cation networks. Which one to use
is determined by the underlyingproblem. However, there are many
practical continuous-outputsituationswhere a classi� cation output
is more meaningful than a continuousoutput, for example, in fuzzy
logic applications. In this research, we have used a classi� cation
NN because the knowledge of the exact number of SDRs expected
is not as important as knowing whether the expected SDR count
is high vs low vs average. Further justi� cation on this decision is
given later in Sec. IV. A popular classi� cation network is the prob-
abilistic NN (PNN).10,11 PNNs are known for their ability to train
quickly on sparse data sets. They are supervised networks that sep-
arate data into a speci� ed number of output categories. PNNs are
three-layer networks wherein the training patterns are presented to
the input layer and the output layer has one neuron for each pos-
sible category. There must be as many neurons in the hidden layer

as there are training patterns. In training the network, the member-
ship of a pattern to any one of the output categories is de� ned by
0–1 indicator variables. The trained network, on the other hand,
producesactivations in the output layer correspondingto the proba-
bility density functionestimate for that category.The highest output
represents the most probable category and is commonly selected as
the network’s classi� cation prediction.

For PNNs, calibration can either be turned off or set to either
iterative or genetic adaptive. With calibration turned off, the user
has to specify a smoothing factor that will be the same for all links
in the network. In some instances this feature might be helpful, for
example, when dealing with multiple outputs that exhibit different
sensitivity to the set of inputs. In general, however, it is recom-
mended to let the NN choose a smoothing factor via calibration.
With iterative calibration, the network training is divided into two
parts. In the � rst part, the network is trained with the data in the
training set. In the second part, calibration is used to test a whole
range of smoothing factors, trying to converge on one that works
best on the test set. The smoothing factor will be the same for all
inputs. Thus, iterative calibration should only be used when it is
justi� ed to assume that all inputs have the same impact on predict-
ing the output. An advantage of iterative calibration is that training
proceeds quickly. With genetic adaptive calibration, the network
determines an individual smoothing factor for each input. Again,
network training proceeds in two parts as for the iterative option.
The only difference is that for the genetic adaptive option, the sec-
ond part uses calibration to � nd a whole range of smoothing factor
combinationsthat works beston the test set. In furtherresearch,such
individual smoothing factors can be used as a sensitivity analysis
tool. The genetic adaptive method will produce networks that work
much better on the test set but will take much longer to train. Both
calibrationmethods were evaluated in this research, and the genetic
adaptive method produced the best results for the data used in our
study.

Genetic algorithms use a � tness measure to determine which of
the individuals in the population survive and reproduce. Thus, sur-
vival of the � ttest causes good solutions to evolve. For PNNs, the
breeding pool size describes the number of smoothing factor com-
binations that are currently the � ttest and which will be further
re� ned through adjustments de� ned by an internal algorithm. The
parameter breedingpool size can be set by the user.Larger breeding
pool sizes result into potentially better networks. However, a large
breedingpoolsizeslowsdown trainingprocess.Generallyspeaking,
larger breeding pool sizes only marginally improve the network’s
quality,whereas genetic adaptivecalibration signi� cantly improves
the network’s quality vs iterative or no calibration.

In this research, we utilized the NeuroShell 2 (Ref. 12) software
to construct and evaluate NNs.

IV. Modeling
Because NNs are essentially black boxes, the modeling does not

center around the development of a structural (or physical) model.
Rather, NN modeling can be divided into the following subtasks:
selection of model inputs/outputs, choice of an appropriate neural
network architecture, data pre- and postmanipulation, and training
of the NN.

This section will describein detail the steps involved in the actual
network modeling. We begin with a data description,continue with
a preanalysis, discuss logical consequences, and describe the NN
design.

A. Data Description

The variables that are thought to be logically related to the SDR
analysis and that were found to be statistically relevant in previous
studies3 ¡ 5 can be divided into � ve classes.

1. Fleet information consists of statistics regarding the � eet of a
particularcarrier. It includes the � eet’s size, the � eet’s composition,
the � eet’s average age, the � eet’s operational region, and the � eet’s
usage, such as average number of cycles per month and average
� ight time per cycle. Only data on � eet size were available for this
current study.
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2. Operations(OPS)surveillancesindicatethenumberof unfavor-
able OPS surveillancesfor a given month as well as the total number
of OPS surveillances in that month. OPS surveillances focus on an
operator’s procedural knowledge to follow safety regulations (e.g.,
pre� ight checks, in� ight operations,emergency measures, etc.) and
the performance abilities of the crew (e.g., the � ight attendants’
knowledge of their jobs, the pilot’s need to maintain certi� cation,
etc.). We utilized both the total number of OPS surveillances and
the number of unfavorable OPS surveillances.

3. Airworthiness (AW) surveillances indicate the percentage of
unfavorable AW surveillances for a given 1-month period. AW
surveillances focus on the maintenance-related aspects of safety
performance, that is, procedures, log books, equipment, preventive
maintenance schedules, etc. We utilized both the total number of
AW surveillancesand the number of unfavorableAW surveillances.

4. Event informationconsists of numericaland narrativeinforma-
tion about any event as de� ned by FAA regulations. These regula-
tions distinguishbetween accident, incidents,and occurrences.The
distinguishing criterion is the severity of the event. Whereas acci-
dents are de� ned through either personnel injury or major damage
to the aircraft, incidents are events with less severe damages, and
occurrences are characterized by either minor damages or action
that did not result into a damage but were intended to avert damage
such as an aborted takeoff. In our study, we utilized the event counts
comprising number of accidents, number of incidents, and number
of occurrences.

5. SDR information consists of numerical and narrative informa-
tion about submitted SDRs as described earlier. In our study we
utilized the number of SDRs by ATA chapter code. All counts as
utilized in this study are monthly aggregates.

Because of the new concept of data strati� cation by ATA chapter
codes in the current study, a natural data scarcity was imposed.
Instead of having total numbers of SDRs, the records were now
disaggregatedaccording to their ATA chapter code, leaving each of
these categories with a signi� cant lower number of SDRs.

B. Data Preanalysis, Consequences, and Data Manipulation

From previous studies, it is known that best results are achieved
for carriers with homogeneous � eets. This is true because focusing
on homogeneous � eets eliminates effects related to � eet compo-
sition. Naturally it is expected that different aircraft types exhibit
different mechanical problems. Therefore, the current study ana-
lyzes the same two carriers as in the previous studies, both with
homogenous � eets.

To avoid the mentioned problems with data scarcity due to the
disaggregationof the SDRs by ATA chapter codes and to keep at-
tention on the concept, we have focused only on SDRs with the
four most frequent ATA chapter codes: 53 fuselage, 52 doors, 33
lights, and 57 wings. The study period was chosenaccordingto data
accessibility, that is, � ve years from March 1993 through February
1998.

To constructan effectiveand more accurate NN, a forecast of ac-
tual numbers of SDRs was not intended, nor is it possible or mean-
ingful. Such a forecast would obviously be unreliable and without
practicaluse. Instead,categorizingnumbersof SDRs (by ATA chap-
ter codes) into high (H), medium (M), and low (L) will yield more
useful information. This, of course, raises the question of how to
partition between H, M, and L. Such divisions are obviously based
on historicalrecords inasmuchasH, M, and L imply a relativemean-
ing. However, there is nothing like an optimal statistical division,
and the categorization is strictly de� ned by the functional require-
ments. To uncomplicate the current analysis and avoid basing it
on wrong assumptions, the current study assumes a straightforward
categorizationas described in the following.For every ATA chapter
code (and each of the two considered aircraft operators), the num-
ber of SDRs was plotted over the 5-year study period. A trend line
was computed, and the deviation of the actual numbers of SDRs
from the trend was used to compute a sample standard deviation.
The residuals of the actual numbers relative to the trend line (the
� t) roughly resembled a normal distribution. Thus, with the trend
line as a function of the expected number of SDRs over time, the

Fig. 1 Categorization of SDR counts into H, M, and L.

computed standard deviation, and the assumption of a normal dis-
tribution, a data categorization was possible. Two more trend lines
(and upper trend line Tu and a lower trend line Tl ) were computed
such that statistically33.3% of all observationsfall above Tu , 33.3%
fall between Tu and Tl , and 33.3% fall below Tl (see Fig. 1).

Because the number of unfavorable surveillance inspections is
only meaningful with respect to the total number of surveillance
inspections, these two variables were combined to de� ne one new
variable, the percentage of unfavorable inspections (for OPS and
AW).

Furthermore, the numbers of incidentsand occurrenceswere col-
lapsed because the distinction between them is not always clear
and sometimes confused during reporting. To account for � rst- and
second-order time effects as well as for autocorrelation, the data
have also been lagged one and two months. To level the effects of
data spikes, data were once analyzedusing actual monthly data and
then a second time by using 3-month moving averages instead.

C. NN Model

As suggested by the data and the underlying phenomenon, SDR
counts were categorized, and supervised PNNs were selected,
trained, and tested. Experiments with different data and network
architecturesdid con� rm that best results are achieved with PNNs.

For comparison, the data were not categorized in H, M, and L,
and three continuous-output network architectures were tested: a
three-layerstandardbackpropagationNN (BPNN), a Jordan–Elman
recurrent BPNN, and a general regression network (GRNN).

Standard BPNNs are NNs where each layer is connected to only
the immediately previous layer. These networks are the most com-
monly used network architectures and are known to perform espe-
cially well for pattern recognition.

RecurrentBPNNs are similar to standardBPNNs, except the only
difference in structureis that there is one extra slab in the input layer
that is connected to a hidden layer just like the other input slab.
This extra slab holds the contents of one of the layers as it existed
when the previous pattern was trained. In this way, the network
sees previous knowledge it had about previous inputs. This extra
slab is sometimes called the network’s long-term memory. Note
that feeding the input layer from one pattern into the input layer
of the next pattern is similar to but more powerful than giving the
network previous values of each of the inputs. Recurrent networks
that feed the hidden layer back into the input layer are commonly
called Jordan–Elman networks. Recurrent networks are known for
their ability to learn on sequences (time series), which makes them
an invaluable tool for the analysis of data with a temporal structure.
If there is no temporal structure, using a recurrent BPNN will not
work as well as a standard BPNN because the long-term memory
slab will introduce random noise into the network.

A GRNN is a three-layer network with one hidden neuron for
each training pattern. Each output is evaluated independent of the
other outputs,and the network trains in one pass of the trainingdata.
GRNNs are known for their ability to train quickly on sparse data.

All three architectureswere trainedon and applied to the raw SDR
counts, but none of the architecturesproduced reasonable results.

The three-layer back-propagation network produced R2 values
ranging from 0.00 to 0.82. In continuous-outputNN modeling, R2

compares the accuracy of the model with the accuracy of a trivial
benchmark model, where the prediction is simply the mean of all
sample patterns.A perfect � t would result in an R2 of 1, a very good
� t near 1, and a poor � t near 0. If the NN model predictions are
worse than one could predict by just using the mean of the sample
case outputs, R2 will be 0. Although not precisely interpreted in the
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same manner as the R2 , the coef� cient of multiple determination
in regression modeling, the R2 in NN modeling can be used as a
measure of model � t. NeuroShell2 uses the following formula for
R2: R2 = SSE / SSY Y , where

SSE = ^ (y ¡ ŷ)2, SSY Y = ^ (y ¡ ȳ)2

and where y is the actual value, ŷ is the predicted value of y, and ȳ
is the mean of they values.

The R2 values for the recurrentnetwork rangedfrom 0.01 to 0.57,
and the R2 values for the GRNN rangedfrom 0.09 to 0.62. Note that
though the upper ends of the R2 ranges seem high, these R2 values
were obtainedonly for the forecast of one particulargroup of SDRs
(SDRs strati� ed by one ATA code). Forecasts of the other seven
groups resulted in R2 values as low as 0.00. This indicates that the
network architecturesmight � t one group of SDRs particularlywell
due to over� tting or random data effects. In general, however, these
network architectures appear not to be suited for SDR forecasting.
Therefore, no further experiments were made with these types of
network architectures.

The analysis has been divided into two separate parts, one for
and with actual monthly data and one for and with smoothed (3-
month moving averages) data. In each of these two parts, the two
considered aircraft operators have been analyzed separately. For
each of the two operators, the four most frequentATA chaptercodes
havebeen consideredseparately.For each of these four ATA chapter
codes, three separate neural networks have been trained and tested,
one with a forecast horizon of 1 month, one with a forecast horizon
of 2 months, and one with a forecast horizon of 3 months. Thus,
altogether48 differentneuralnetworkshave been trainedand tested.

All NNs have a set of 21 inputs and 3 outputs each. The inputs
are as follows: � eet size for months t, t ¡ 1, and t ¡ 2 (3); percent
unfavorable OPS surveillance for months t, t ¡ 1, and t ¡ 2 (3);
percent unfavorable AW surveillancefor months t , t ¡ 1, and t ¡ 2
(3); number of accidents for months t, t ¡ 1, and t ¡ 2 (3); number
of incidents plus occurrences for months t, t ¡ 1, and t ¡ 2 (3); and
three indicator variables for the category of SDR count (H, M, L)
for months t ¡ 1 and t ¡ 2 (6).

The outputs are three indicator variables for the categoryof SDR
count (H, M, L) for the respective forecast.

The 24 neural networks developed for the actual monthly data
and the 24 neural networks developed for the smoothed (3-month
moving average) data differ only in that the � rst use actual data for
the inputs and outputs,whereas the later ones use smootheddata for
all inputs and outputs.

Table 2 Correct NN classi� cations, by ATA chapter code and by forecast horizon (operator A, for pattern set, smoothed data)a

Number of correct classi� cations

Parameter 41 42 43 44 45 46 47 48 49 50 51 52

ATA number
53 —— —— —— —— —— t + 2 t + 3 t + 1 —— —— —— ——
33 —— —— —— t + 3 —— t + 2 —— —— —— —— t + 1 ——
57 —— —— —— —— t + 2, t + 1 —— t + 3 —— —— —— —— ——
52 t + 3 —— —— —— t + 1 t + 2 —— —— —— —— —— ——

S-rate, % 79 81 83 85 87 88 90 92 94 96 98 100
aHere 0% a error.

Table 3 Correct NN classi� cations, by ATA chapter code and by forecast horizon (operator B, for pattern set, smoothed data)a

Number of correct classi� cations

Parameter 41 42 43 44 45 46 47 48 49 50 51 52

ATA number
53 t + 1 —— —— t + 3 —— —— —— t + 2 —— —— —— ——
33 —— —— —— —— t + 2 —— —— —— t + 3 —— t + 1 ——
57 t + 2 —— —— —— —— t + 1 —— —— t + 3 —— —— ——
52 —— —— —— —— —— t + 3 —— —— t + 2 t + 1 —— ——

S-rate, % 79 81 83 85 87 88 90 92 94 96 98 100

aHere 0% a error.

Each of the 48 data sets (for actual and smoothed data, for each
of the two operators, for each of four ATA chapter codes, and for
all three forecast horizons) had 52 patterns total, corresponding to
the 52 in the 5-year study period. Note that the � rst four and the last
four months had to be cut off due to 3-month averaging and data
lagging.

Each of the 48 data sets has been divided into training, test, and
productionsets. A divisionof 60% (training set), 20% (test set), and
20% (production set) was made and resulted into 32, 10, and 10
patterns, respectively, for the training, test, and production sets.

The actual selectionof patternswas randombecauseexperiments
with the selection indicated no crucial sensitivity and randomness
is deemed the best choice in absence of other reasoning. However,
to allow for comparison among the 48 models, the same randomly
chosen pattern division was applied to all 48 models.

Furthermore, the NNs were robust to changes in the default pa-
rameters. Thus default parameters were used for the training of all
48 models. The parameter settings for the PNN are summarized as
follows: slab 1 (layer 1) 21 neurons and linear [0, 1] scale func-
tion, slab 2 (layer 2) 32 neurons, slab 3 (layer 3) 3 neurons, vanilla
Euclideandistancemetric, geneticadaptioncalibration,anda breed-
ing pool size of 20.

V. NN Modeling Results
After training,each one of the NNs was appliedonce to a set of all

patterns and once to the productionset only. Tables 2–5 summarize
the results of the 24 predictive models for the smoothed (3-month
averages) data applied twice, once to the pattern set and once to the
productionset. There are another24 predictivemodels for the actual
(not smoothed) data, but the results are not shown here.

A. Quality Performance Measures

Becauseall of the modelsare categoricalnetworks, standardmea-
sures of prediction accuracy, such as the mean square error or R2,
were not computed.Instead two othermeasuresof predictionquality
were de� ned:

The � rst, success rate, is measured as

S-rate :=
(number of correctly classi� ed patterns)

(total number of patterns)

The second performance measure is the a value of rejecting the
NN as a randomgenerator.This performancemeasure builds on the
theory of hypothesis testing. In hypothesis testing, a type I error is
committed if a nullhypothesisis rejectedwhen it is, in fact, true.The
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Table 4 Correct NN classi� cations, by ATA chapter code and by forecast horizon (operator A, for production set, smoothed data)

Number of correct classi� cations

Parameter 0 1 2 3 4 5 6 7 8 9 10

ATA number
53 —— —— —— —— —— t + 3, t + 2 —— —— t + 1 —— ——
33 —— —— —— —— t + 3 —— —— t + 2 —— t + 1 ——
57 —— —— —— —— —— —— t + 3, t + 1 —— t + 2 —— ——
52 —— —— —— —— —— t + 3, t + 2 t + 1 —— —— —— ——

S-rate, % 0 10 20 30 40 50 60 70 80 90 100
a -error, % 100 98 90 70 44 21 8 2 0 0 0

Table 5 Correct NN classi� cations, by ATA chapter code and by forecast horizon (operator B, for production set, smoothed data)

Number of correct classi� cations

Parameter 0 1 2 3 4 5 6 7 8 9 10

ATA number
53 —— —— —— t + 1 t + 3 —— —— t + 2 —— —— ——
33 —— —— —— —— —— —— —— t + 3, t + 2 —— t + 1 ——
57 —— —— —— t + 2 —— —— —— t + 3 t + 1 —— ——
52 —— —— —— —— —— t + 3 —— t + 2 t + 1 —— ——

S-rate, % 0 10 20 30 40 50 60 70 80 90 100
a -error, % 100 98 90 70 44 21 8 2 0 0 0

probability of committing this type of error is commonly denoted
by a . In other words, a is the probability that the observed results
could have occurred under the null hypothesis. In our case, the null
hypothesis is the hypothesis that the NN is a random generator that
picks any predictedvalue at randomout of the possibleoutput value
domain (H, M, L). Then, under the null hypothesis, the probability
of picking k out of n output values correctly is

a = (n

k ) ¢ ( 1

3)
k

¢ ( 1

3)
(n ¡ k)

B. Quantitative Findings

Tables 2–5 summarize the prediction quality of the NNs for the
smoothed (3-month moving average) data. Each table summarizes
the quality of the three forecasthorizons(t + 1, t + 2, t + 3) for each
of the four ATA chapter codes. The top row indicates how many
predictions are accurate for the respective NN model. The bottom
two rows (Tables 4 and 5) indicate the prediction quality of the
respectivemodel with regard to the earlier de� ned two performance
measures of the prediction quality. Tables 2 and 3 summarize the
predictionqualityon the patternset (for operatorsA and B).Tables4
and 5 summarize the prediction quality on the production set (for
operators A and B).

For example, Table 3 summarizes the prediction results of the
NNs on the pattern set (52 patterns) for operator B with smoothed
(3-month moving average) data. The NN for ATA code 33 and a
2-month forecast horizon, for instance, classi� ed 45 out of the 52
patterns correctly, corresponding to a 87% success rate and a zero
probability that such accuracy could have been randomly achieved.

C. Qualitative Findings

As already indicated, the NNs were robust to changes in the de-
fault parameters and not sensitive to the selection of training, test,
and pattern sets. This suggests that the underlyingproblem is learn-
able and that the NNs were able to learn variable associations.

In most cases, the NNs provide good to excellent forecasts. The
two predictionquality measures do further indicate some degree of
regularity or correlation in the underlying process as well as the
capability of the NN to recognize those relationships.Note that the
success rate expected by a random generator is only 33.3% (not
50%).

Generally, the forecast quality is excellenton the pattern sets and
acceptableon the productionsets. Though results from NNs applied
to the production set give generally a more realistic picture of the

network’s quality, note that this study was based on a relatively
small sample size of only 52 patterns. This warrants caution in
overevaluatingthe results from the production set, which consisted
of only 10 patterns.

As another rule of thumb it can be seen that the forecast quality
generally decreases with increasing forecast horizon (t + 1 � elds
are predominately on the left, t + 2 � elds are in the middle, and
t + 3 � elds are on the left-handside of Tables 2–5). This is in agree-
ment with what is to be expected by forecast models. That is, the
longer the forecasthorizon, the lower the predictionaccuracy.It fur-
ther justi� es validityof the NNs as well as the hypothesisof existing
relationships (in the time domain and in the performance measure
domain) in the underlying data.

VI. Conclusions
An NN representsa powerful tool in modeling complex data rela-

tionshipsand generatinghigh-accuracyforecastswithout the neces-
sity of understanding the underlyingphysical relationship.For data
with random spikes and outliers, as in the underlying study, PNNs
are most appropriate and will yield best results for classifying data
patterns.Data smoothing throughconsiderationof moving averages
will further remove spikes and increase the NN quality. However,
oversmoothinghas to be balanced against functional requirements.
For the given data in this study, a 3-month moving average is ap-
propriate.

In the current study, many key variables that have been found im-
portant in previous studies were no longer available. Nonetheless,
the developed NNs provided good to excellent prediction results
based on easy-to-interpret, tangible measures of predictionquality.
Re� nement of the developed models can be achieved through re-
capture of the lost variables, further selection, and/or manipulation
of data. In general, the more the better does not apply to the num-
ber of inputs for NNs. Thus, further statistical studies and commu-
nication/feedback from � eld inspectors are important steps for an
optimal network design.

The predictive quality of the developed networks indicates the
existence of relationships in the underlying data and the network’s
capability to recognize them. Further research could focus on the
analysis of the weights of NNs in an attempt to derive an actual
structural, physical, or mathematical model of the actual SDR sub-
mission process.
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